
MODEST-7c

Multi-Scale, Multi-Physics
Software Frameworks

in Computational Physics

MODEST research

● dense stellar systems

MODEST research

● dense stellar systems
● physical processes

– stellar dynamics
– stellar evolution
– stellar encounters and collisions

● broad range in spatial and temporal scales
– most stars evolve in isolation most of the time

● physical interactions among stars
 software integration becomes essential

MODEST Goals

● “competitive collaboration”
● high-performance applications
● interoperation of software
● calibration and comparison of codes
● visualization of results
● comparison of simulations with observations

Collaborative Software
Development

● software engineering
– modules
– data structures
– interfaces
– schedulers
– etc.

● legacy codes

Collaborative Software
Management

● social engineering
– broad range in programming styles

● “legacy programmers”
● modularity and structure

– generational and cultural differences
– open source
– contributed software

MUSE (Multiscale Multiphysics
Scientific Environment)

● wiki: http://london.science.uva.nl:8000/muse

● modules for stars, dynamics, collisions, etc.
● implemented as “black boxes” with wrappers
● all modules provide prediction time scales
● coordinated by “blind” scheduler
● top level “glue” — swig/python

Star module

INTERFACEinitialization
mass, composition

star ID

query

ID, time

mass
radius
temperature
(structure)
...

scheduling

ID t

stellar data

toy model
analytic calculation

lookup table
heuristic recipe
full simulation
(real star...)

...

Stellar Dynamics Stellar Evolution

Hydrodynamics

Stellar Dynamics Stellar Evolution

Hydrodynamics

Scheduler

import gravity.hermite.muse_dynamics as dyn
import stellar.EFT89.muse_stellar as star
import collisions.sticky_spheres.muse_hydro as coll
.
. (initialization)
.
while time < t_max:

time += dtime
dyn.evolve_dynamics(time)
star.evolve_stellar(time)

for i in range(nd):
id = star.get_stellar_identity(i)
dyn.set_dynamical_mass(id, star.get_mass(id))
dyn.set_dynamical_radius(id, star.get_radius(id))

id1, id2 = dyn.get_colliding_pair()
if id1 >= 0 and id2 >= 0:

nd, ns = collide_stellar_pair(nd, id1, id2)

print "end at t = ", time, ", Ndyn = ", nd, ", Nstars= ", ns

MUSE Summary

● clean separation of functionality
● modular design encourages experimentation
● “easily” incorporates legacy code

● is it efficient?
● can it be extended to more complex physics?

● what other ways are there of interfacing
programs and sharing data?

Program

● Morning
9:00 MODEST and the MUSE project
9:30 Common Component Architecture
 D. Bernholdt (Oak Ridge National Lab)
10:30 coffee
11:00 The Cactus Environment
 E. Schnetter (LSU)
12:00 Frameworks for Climate Modeling
 V. Balaji (Princeton)
1:00 lunch

● Afternoon
2:30 Open discussion / demonstrations

